A new chemical compound has been developed for restoring the functions lost to spinal cord injury. The compound allowed paralyzed muscles to activate in more than 80 percent of the animals tested. Spinal cord injury regained the ability to urinate, move or both. In an experiment, the peptide appears to allow nerve fibers to overcome the scarring blocks and helped in their re-growth. There are currently no drug therapies available that improve the very limited natural recovery from spinal cord injuries that patient’s experience. For any spinal cord-injured patient today, it would be considered extraordinary to regain even one of these functions, especially bladder function. ISP additionally has treatment potential for diseases where the body produces destructive scarring such as heart attack, peripheral nerve injury and multiple sclerosis. The investigators designed the ISP peptide to turn off the neuron’s proteoglycan receptor on/off switch. In addition, they added a shuttle called TAT (trans-activator of transcription) to send ISP throughout the nervous system and across cell membranes. ISP travels to and penetrates the membranes of cells, including the scar tissue-covered injury site. Because the peptides can penetrate tissue, ISP can be delivered systemically rather than with a direct injection to the spinal cord.
Check Also
Study revealed how bacteria drills into our cells and kill them
A team of scientists has revealed how certain harmful bacteria drill into our cells to ...
Bacteria turns into a storage device
A new DNA-based recorder allows bioengineers to create cell cultures that detect information in their ...
DNA-based computer circuit comes to reality with molecular electronics
Scientists have achieved the most significant breakthrough towards developing DNA-based electrical circuits. Molecular electronics, which uses ...
Stem cells to fight brain cancer
Scientists from Harvard Medical School have discovered a way of turning stem cells into killing ...
Why some people are better navigators
The part of the brain that tells us the direction to travel when we navigate ...